
A K n o w n P l a i n t e x t A t t a c k on the P K Z I P
S t r e a m Cipher

Eli Biham* Paul C. Kocher**

Abs t r ac t . The PKZIP program is one of the more widely used archive/
compression programs on personM, computers. It also has many compat-
ible variants on other computers~ and is used by most BBS's and ftp
sites to compress their archives. PKZIP provides a stream cipher which
allows users to scramble files with variable length keys (passwords).
In this paper we describe a known pla.intext attack on this cipher, which
can find the internal representation of the key within a few hours on
a personal computer using a few hundred bytes of known plaintext. In
many cases, the actual user keys can also be found from the internal
representation. We conclude that the PKZIP cipher is weak, and should
not be used to protect valuable data.

1 I n t r o d u c t i o n

The PKZIP program is one of the more widely used archive/compression pro-
grams on personal computers. It also has many compatible variants on other
computers (such as Infozip's zip/unzip), and is used by most BBS's and ftp sites
to compress their archives. PKZIP provides a s t ream cipher which allows users to
scramble the archived files under variable length keys (passwords). This s t ream
cipher was designed by Roger Schlafly.

In this paper we describe a known plaintext at tack on the PKZIP s t ream
cipher which takes a few hours on a personal computer and requires about 13-
40 (compressed) known plaintext bytes, or the first 30-200 uncompressed bytes,
when the file is compressed. The at tack primari ly finds the 96-bit internM rep-
resentation of the key, which suffices to decrypt the whole file and any other file
encrypted under the same key. Later, the original key can be constructed. This
a t tack was used to find the key of the PKZIP contest.

The analysis in this paper holds to both versions of PKZIP: version 1.10 and
version 2.04g. The ciphers used in the two versions differ in minor details, which
does not affect the analysis.

The structure of this paper is as follows: Section 2 describes PKZIP and the
PKZIP s t ream cipher. The at tack is described in Section 3, and a s u m m a r y of
the results is given in Section 4.

* Computer Science Department, Technion - Israel Institute of Technology, Haifa
32000, Israel

** Independent cryptographic consultant, 7700 N.W. Ridgewood Dr., Corvallis, OR
97330, USA

A Known Plaintext Attack on the PKZIP Stream Cipher 145

2 T h e P K Z I P S t r e a m C i p h e r

PKZIP manages a ZIP file[l] which is an archive containing many files in a
compressed form, along with file headers describing (for each file) the file name,
the compression method, whether the file is encrypted, the CRC-32 value, the
original and compressed sizes of the file, and other auxiliary information.

The files are kept in the zip-file in the shortest form possible of several com-
pression methods. In case that the compression methods do not shrink the size
of the file, the files are stored without compression. If encryption is required, 12
bytes (called the encryption header) are prepended to the compressed form, and
the encrypted form of the result is kept in the zip-file. The 12 prepended bytes
are used for randomization, but also include header dependent data to allow
identification of wrong keys when decrypting. In particular, in PKZIP 1.10 the
last two bytes of these 12 bytes .~re derived from the CRC-32 field of the header,
and many of the other prepenc[ed bytes are constant or can be predicted from
other values in the file header. In PKZIP 2.04g, only the last byte of these 12
bytes is derived from the CRC-32 field. The file headers are not encrypted in
both versions.

The cipher is byte-oriented, encrypting under variable length keys. It has a
96-bit internal memory, divided into three 32-bit words called key0, keyl and
key2. An 8-bit variable key3 (not part of the internal memory) is derived from
key2. The key initializes the memory: each key has an equivalent internal repre-
sentation as three 32-bit words. Two keys are equivalent if their internal represen-
tations are the same. The plaintext bytes update the memory during encryption.

The main function of the cipher is called update_keys, and is used to update
the internal memory and to derive the variable key3, for each given input (usually
plaintext) byte:

update_keys i (char) :
local unsigned short temp
key0i+l ~ ere32 (key0i, char)
keyl~+ 1 *-- (keyl~ + LSB(key0~+l)) * 134775813+ 1 (mod 232)
key2i+ 1 ~ crc32(key2~, MSB(keyli+l))
tempi+l ~-- key2i+l I 3 (16 LS bits)
key3i+ 1 ~-- LSB((tempi+l * (tempi+l | 1)) >> 8)

end update_keys

where I is the binary inclusive-or operator, and ~ denotes the right shift operator
(as in the C programming language). LSB and MSB denote the least significant
byte and the most significant byte of the operands, respectively. Note that the
indices are used only for future references and are not part of the algorithm, and
that the results of key3 using inclusive-or with 3 in the calculation of temp are
the same as with the original inclusive-or with 2 used in the original algorithm.
We prefer this notation in order to reduce one bit of uncertainty about temp in
the following discussion.

Before encrypting, the key (password) is processed to update the initial value
of the internal memory by:

146 E. Biham and P.C. Kocher

process_keys(key):
key01_ l +- 0x12345678
keyl l_ t ~ 0x23456789
key21_ z ~-- 0x34567890
loop for i ~-- 1 to l

update_keys/_~ (key i)
end loop

end process_keys

where 1 is the length of the key (in bytes) and hexadecimal numbers are prefixed
by 0x (as in the C programming language). After executing this procedure, the
internal memory contains the internal representation of the key, which is denoted
by key01, keyl 1 and key21.

The encryption algorithm itself processes the bytes of the compressed form
along with the prepended 12 bytes by:

Encryption
prepend P1,..., P12
loop for i +- 1 to n

Ci +- Pi �9 key3i
update_keysi (Pi)

end loop

Decryption

loop for i ~-- 1 to n
Pi *-- Ci @ key3i
update-keysi(Pi)

end loop
discard P1, . . . , P12

The decryption process is similar, except that it discards the 12 prepended bytes.
The crc32 operation takes a previous 32-bit value and a byte, XORs them and

calculates the next 32-bit value by the crc polynomial denoted by 0xEDB88320.
In practice, a table crctab can be precomputed, and the crc32 calculation be-
comes:

crc32 = crc32(pval, char) = (pval >> 8) � 9 c rc tab[LSB(pval) �9 char]

The crc32 equation is invertible in the following sense:

pval = crc32-1 (crc32, char) = (crc32 << 8) �9 ercinvtab[MSB(crc32)] • char

crctab and crcinvtab are precomputed as:

init_crcO :
local unsigned long temp
loop for i ~-- 0 to 255

temp ~ crc32(0, i)
crctab[i] *- temp
crcinvtab[temp >> 24] +- (temp << 8) | i

end loop
end init_crc

in which crc32 refers to the original definition of crc32:

A Known Plaintext Attack on the PKZIP Stream Cipher 147

crc32(temp, i) :
temp ~-- temp @ i
loop for j ~-- 0 to 7

if odd(temp) then
temp *--- temp >> 1 @ OxEDB88320

else
temp +-- temp >> 1

endif
end loop
return temp

end crc32

3 T h e At ta c k

The attack we describe works even if the known plaintext bytes are not the first
bytes (if the file is compressed, it needs the compressed bytes, rather than the
uncompressed bytes). In the following discussion the subscripts of the n known
plaintext bytes are denoted by 1,... ,n, even if the known bytes are not the first
bytes. We ignore the subscripts when the meaning is clear and the discussion
holds for all the indices.

Under a known plaintext attack, both the plaintext and the ciphertext are
known. In the PKZIP cipher, given a plaintext byte and the corresponding ci-
phertext byte, the value of the variable key3 can be calculated by

key3~ = Pi @ Ci.

Given P1,.-. ,Pn and C1,... ,C~, we receive the values of key31,... ,key3 n. The
known plaintext bytes are the inputs of the update_keys function, and the derived
key3's are the outputs. Therefore, in order to break the cipher, it suffices to solve
the set of equations derived from update_keys, and find the initial values of key0,
keyl and key2.

In the following subsections we describe how we find many possible values
for key2, then how we extend these possible values to possible values of keyl,
and key0, and how we discard all the wrong values. Then, we remain with only
the right values which correspond to the internal representation of the key.

3.1 key2

The value of key3 depends only on the 14 bits of key2 that participate in temp.
Any value of key3 is suggested by exactly 64 possible values of temp (and thus
64 possible values of the 14 bits of key2). The two least significant bits of key2
and the 16 most significant bits do not affect key3 (neither temp).

Given the 64 possibilities of temp in one location of the encrypted text, we
complete the 16 most significant bits of key2 with all the216 possible values,

148 E. Biham and P.C. Kocher

Side Term Bits Number Bits Position Number of Values
Left key2 i 14 2-15 64
Right key2i+ 1 << 8 22 10-31 1

crcinvtab[MSB (key2i+ 1)] 32 0-31 1
MSB(keyli+" 1) 24 8-31 1

Total Left Hand Side 14 2-15 64
Total Right Hand Side 22 10-32 1
Common bits 6 10-15
Total bits 30 2-31

Table 1. The Known Bits in Equation 1

and get 222 possible values for the 30 most significant bits of key2. key2i+ 1 is
calculated by key2~+~ ~--crc32(key2~, MSB(keyl~+l)). Thus,

key2 i = crc32-1 (key2i+l ' MSB(keyl~+l)) (1)

= (key2~+ 1 << 8) �9 crcinvtab[MSB(key2i+l)] O MSB(keyli+l) .

Given any particular value of key2i+l, for each term of this equation we can
calculate the value of the 22 most significant bits of the right hand side of the
equation, and we know 64 possibilities for the value of 14 bits of the left hand
side, as described in Table 1. From the table, we can see that six bits are common
to the right hand side and the left hand side. Only about 2 -6 of the possible
values of the 14 bits of key2 i have the same value of the common bits as in the
right hand side, and thus, we remain with only one possible value of the 14 bits
of key2 i in average, for each possible value of the 30 bits of key2i+ 1. When this
equation holds, we can complete additional bits of the right and the left sides,
up to the total of the 30 bits known in at le~sk one of the sides. Thus, we can
deduce the 30 most significant bits of key2 i. W e get in average one value for
these 30 most significant bits of key2i, for each value of the 30 most significant
bits of key2i+ 1. Therefore, we are now just in the same situation with key2~ as
we were before with key2i+l, and we can now find values of 30 bits of key2i_l,
key2i_2, . . . , key21. Given this list of 30-bit values, we can complete the 32-bit
values of key2n, key2n_l, . . . , key2~ (excluding key21) using the same equation.
We remain with about 222 lists of possible values (key2n, key2 n_l , . . . , key22),
of which one must be the list actually calculated during encryption.

3.2 Reducing t h e n u m b e r o f pos s ib l e va lues o f key2

The total complexity of our attack is (as described later) 216 times the number of
possible lists of key2's. If we remain with 222 lists, the total complexity becomes
238 . This complexity can be reduced if we can reduce the number of lists of
key2's without discarding the right list.

A Known Plaintext Attack on the PKZIP Stream Cipher 149

bytes key2 Kst keg's
entries

5000000
12~2=4194304 " ~

2 3473408 2oooooo
3 2152448
4 1789183 10o0OOO
5 1521084

5OOO0O
10 798169
15 538746

2OOOO0
20 409011
25 332606 l~0oo
30 283930 5OOOO
40 213751
50 174471 2OOOO

100 88248
200 43796 1oooo

300 31088 5000
500 16822

I000 7785 2~o

2000 5196
4000 3976 1ooo

6000 3000 5~

8000 1296

10000 1857 2~
12000 243

12289 801 1

\
\

\
\

t.i

bytes
10 100 1000 10000

Fig. 1. Decre~e in the number of key2 candidates using varying amounts of known
plaintext. These results are for the PKZIP contest file and are fairly typical, though
the entry 12000 is unusually low. (logarithmic scaling).

We observed tha t the at tack requires only~ !"2-13 known plaintext bytes (as
we describe later). Our idea is to use longer known plaintext streams, and to
reduce the number of lists based on the additional plaintext. In particular, we
are interested only in the values of key213 , and not in all the list of key2i, i =
1 3 , . . . , n. key213 is then used in the at tack as is described above.

We s tar t with the 222 possible values of key2~, and calculate the possible
values of key2,~_ 1, key2~_ 2, etc. using Equation 1. The number of possible values
of key2 i (i = n - 1, n - 2, etc.) remains about 222. However, some of the values
are duplicates of other values. When these duplicates are discarded, the number
of possible values of key2 i is substantially decreased. To speed things up, we
calculate all the possible values of key2 n_ 1, and remove the duplicates. Then we
calculate all the possible values of key2n_2, and remove the duplicates, and so on.
When the duplicates fraction becomes smaller, we can remove the duplicates only
every several bytes, to save overhead. Figure 1 shows the number of remaining
values for any given size of known plaintext part icipating in the reduction, as
was measured on the PKZIP contest file (which is typical). We observed tha t

150 E. Biham and P.C. Kocher

using about 40 known plaintext bytes (28 of them are used for the reduction and
12 for the attack), the number of possible values of key21~ is reduced to about
2 is, and the complexity of the attack is 234. Using 10000-byte known plaintext,
the complexity of our attack is reduced to 224-227.

3.3 keyl

From the list of (key2n, key2n_l, . . . , key22) we can calculate the values of the
most significant bytes the keyl 's by

MSB(keyli+l) = (key2i+ 1 ((8) ~ crcinvtab[MSB(key2i+l)] �9 key2i.

We receive the list (MSB(keytn) , MSB(keyl~_l) , . . . , MSS(keyl3)) (excluding
MSB(keyl2)).

Given MSB(keyl .) and MSB(keyln_l), we can calculate about 216 values
for the full values of keyl n and keyl~_ 1 + LSB(key0~). This calculation can be
done efficiently using lookup tables of size 256-1024. Note that

keyln_ 1 + LSB(key0n) = (keyl n - 1). 134775813 -1 (mod 232)

and that LSB(key0n) is in the range 0, . . . , 255. At this point we have about
211 �9 216 = 227 (or 222 �9 216 = 23s) possible lists of key2's and keyl~. Note
that in the remainder of the attack no additionM complexity is added, and all
the additional operations contain a fixed number of instructions for each of the
already existing list.

The values of keyl~_ 1 + LSB(key0~) are very close to the values of keyl~_ 1
(since we lack only the 8-bit value LSB(key0~)). Thus, an average of only
256-2 - s = 1 possible vMue of keyl,~_ 1 that leads to the most significant byte of
keyl~_ 2 from the list. This value can be found efficiently using the same lookup
tables used for finding keyl~, with only a few operations. Then, we remain with
a similar situation, in which keyl~_ 1 is known and we lack only eight bits of
keyl~_ 2. We find keyl~_ 2 with the same algorithm, and then find the rest of
keyl~_3, keyl,~_4, and so on with the same algorithm. We result with about
227 possible lists, each containing the values of (key2n, key2._1, " . . , key22, and
keyln, keyln_l , . . . , keyl4) (again, keyl 3 cannot be fully recovered since two
successive wh~es of MSB(keyl) are requireZ ~o find each value of keyl).

3.4 key0

Given a list of (keyln, keyl~_l, . . . , keyl4), we can easily calculate the values
of the least significant bytes of (key0n, key0n_l, . . . , key05) by

LSB(key0i+l) = ((keyli+l - 1). 134775813 -1) - keyl i (rood 232).

key0i+ 1 is calculated by

key0i+l ~-- crc32(key0i, Pi)

.= (key0 i • 8) @ crctab[LSB(key0i) ~3 Pi].

A Known Plaintext Attack on the PKZIP Stream Cipher 151

Crc32 is a linear function, and from any four consecutive LSB(key0) values,
together with the corresponding known plaintext bytes it is possible to recover
the full four key0's. Moreover, given one full key0, it is possible to reconstruct
all the other key0's by calculating forward and backward, when the plaintext
bytes are given. Thus, we can now receive key0,, . . . , key01 (this time including
key01). We can now compare the values of the least significant bytes of key0,~_4,
�9 key0n_ 7 to the corresponding values from the lists. Only a fraction of 2 -32
of the lists satisfy the equality. Since we have only about 227 possible lists, it is
expected that only one list remain. This list must have the right values of the
key0's, keyl's, and key2's, and in particular the right values of key0n, keyln and
key2,~. In total we need 12 known plaintext bytes for this analysis (except for
reducing the number of key2 lists) since in the lists the values of LSB(key0i)
start w i t h i = 5 , a n d n - 7 = 5 ~ n = 12.

If no reduction of the number of key2 lists is performed, 238 lists of (key0,
keyl, key2) remain at this point, rather than 227. Thus, we need to compare five
bytes key0~_4, . . . , key0n_ s in order to remain with only one list. In this case,
13 known plaintext bytes are required for the whole attack, and the complexity
of analysis is 23s.

3.5 The In te rna l R e p r e s e n t a t i o n of the K ey

Given key0n, keyl n and key2n, it is possible to construct key0i, keyl i and key2 i
for any i < n using only the ciphertext bytes, without using the known plain-
text, and even if the known plaintext starts in the middle of the encrypted file
this construction works and provides also the unknown plaintext and the 12
prepended bytes. In particular it can find the internal representation of the key,
denoted by key01, keyl 1 and key21 (where the index denotes again the index in
the encrypted text, rather than in the known plaintext). The calculation is as
follows:

key2i =

keyl i =

tempi =

key3 i =

Pi=

key0i =

crc32 -l(key2i+l, MSB(keyli+I))

((keyli+ 1 - 1) * 134775813 -1) - LSB(key0i+l)

key2 i]3

LSB((temp i * (tempi @ 1)) >> 8)

Ci ~ key3i

crc32(key0i+l, Pi)

(mod 232)

(2)

The resulting value of (key01, key 1 l, key21) is the internal representation
of the key. It is independent of the plaintext and the prepended bytes, and
depends only on the key. With this internal representation of the key we can
decrypt any ciphertext encrypted under the same key. The two bytes of crc32
(one byte in version 2.04g) which are included in the 12 prepended bytes allow
further verification that the file is really encrypted under the found internal
representation of the key.

152 E. Biham and P.C. Kocher

Key length 1-6 7 8 9 10 11 12 13
Complexity 1 28 216 224 239- 240 243 2 ~6

Table 2. Complexity of finding the key itself

3.6 The Key (Password)

The internal representation of the key suffices to break the cipher. However, we
can go even further and find the key itself from this internal representation with
the complexities summarized in Table 2. The algorithm tries all key lengths 0,
1, 2, . . . , up to some maximal length; for each key length it does as described in
the following paragraphs.

For I < 4 it knows key01_I atl4 key01 . Only l _< 4 key bytes are entered to the
crc32 calculations that update key01_ z into key01 . Crc32 is a linear function, and
these 1 < 4 key bytes can be recovered, just as key0,~, . . . , key0~_ 3 recovered
above. Given the l key bytes, we reconstruct the internal representation, and
verify that we get keyl I and key21 as expected (key01 must be as expected,
due to the construction). If the verification succeeds, we found the key (or an
equivalent key). Otherwise, we try the next key length.

For 5 < 1 < 6 we can calculate keYl0, key20 and key2_1, as in Equation 2.
Then, key22_l, . . . , key2_ 2 can be recovered since they are also calculated with
crc32, and depend on l - 2 < 4 unknown bytes (of keyl's). These unknown bytes
MSB(keyl~_l) , . . . , MSB(keyl 1) are also recovered at the same time. keyl l_ l is
known. Thus, we can receive an average of one possible value for keyl2_ l and for
keyl3_l, together with LSB(key02_~) and LSB(key03_l) , using the same lookup
tables used in the attack. From LSB(key02_t) and LSB(key03_t) and key01_~,
we can complete key02_ l and key03_ l and get key 1 and key 2. The remaining
1 - 2 key bytes are found by solving the l - 2 < 4 missing bytes of the crc32
as is done for the case of 1 < 4. Finally, we verify that the received key has the
expected internal representation. If so, we have found the key (or an equivalent
key). Otherwise, we try the next key length.

For l > 6, we try all the possible values of key1, . . . , key~_6, calculating
key0_5, keyl_ 5 and k e y 2 5. Then we used the l = 6 algorithm to find the re-
maining six key bytes. In total we try about 2s(l-6) keys. Only a fraction of
2 -64 of them pass the verification (2 -32 due to each of keyl and key2). Thus,
we expect to remain with only the right key (or an equivalent) in trials of up to
13-byte keys. Note that keys longer than 12 bytes will almost always have equiv-
alents with up to 12 (or sometimes 13) bytes, since the internal representation
is only 12-bytes long.

4 S u m m a r y

In this paper we describe a new attack on the PKZIP stream cipher which finds
the internal representation of the key, which suffices to decrypt the whole file

A Known Plaintext Attack on the PKZIP Stream Cipher 153

Bytes 13 40 110 310 510 1000 4000 10000
Complexity 23s 234 232 231 23o 2 ~9 22s 227

Table 3. Complexity of the attack by the size of the known plaintext

and any other file which is encrypted by the same key. This known plaintext
attack breaks the cipher using 40 (compressed) known plaintext bytes, or about
the 200 first uncompressed bytes (if the file is compressed), with complexity 234.
Using about 10000 known plaintext bytes, the complexity is reduced to about
227. Table 3 describes the complexity of the attack for various sizes of known
plaintext. The original key (password) can be constructed from the internal rep-
resentation. An implementationpf this attack in software was applied against the
PKZIP cipher contest. It found:tlie key "f7 30 69 89 77 bl 20" (in hexadecimal)
within a few hours on a personal computer.

A variant of the attack requires only 13 known plaintext bytes, in price of a
higher complexity 23s. Since the last two bytes (one in version 2.04g) of the 12
prepended bytes are always known, if the known plaintext portion of the file is
in its beginning, the attack requires only 11 (12) known plaintext bytes of the
compressed file. (In version 1.10 several additional prepended bytes might be
predictable, thus the attack might actually require even fewer known plaintext
bytes.)

We conclude that the PKZIP cipher is weak and that it should not be used
to protect valuable information.

References

1. PKWARE, Inc., General Format of a ZIP File, technical note, included in PKZIP
1.10 distribution (pkz110.exe: file appnote.txt).

