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Abs t r ac t .  The PKZIP program is one of the more widely used archive/ 
compression programs on personM, computers. It also has many compat- 
ible variants on other computers~ and is used by most BBS's and ftp 
sites to compress their archives. PKZIP provides a stream cipher which 
allows users to scramble files with variable length keys (passwords). 
In this paper we describe a known pla.intext attack on this cipher, which 
can find the internal representation of the key within a few hours on 
a personal computer using a few hundred bytes of known plaintext. In 
many cases, the actual user keys can also be found from the internal 
representation. We conclude that the PKZIP cipher is weak, and should 
not be used to protect valuable data. 

1 I n t r o d u c t i o n  

The PKZIP  program is one of the more widely used archive/compression pro- 
grams on personal computers.  It  also has many  compatible  variants on other 
computers  (such as Infozip's zip/unzip),  and is used by most  BBS's and ftp sites 
to compress their archives. PKZIP  provides a s t ream cipher which allows users to 
scramble the archived files under variable length keys (passwords). This s t ream 
cipher was designed by Roger Schlafly. 

In this paper  we describe a known plaintext at tack on the PKZIP  s t ream 
cipher which takes a few hours on a personal computer  and requires about  13- 
40 (compressed) known plaintext bytes, or the first 30-200 uncompressed bytes, 
when the file is compressed. The at tack primari ly finds the 96-bit internM rep- 
resentation of the key, which suffices to decrypt the whole file and any other file 
encrypted under the same key. Later, the original key can be constructed. This  
a t tack was used to find the key of the PKZIP  contest. 

The analysis in this paper  holds to both  versions of PKZIP:  version 1.10 and 
version 2.04g. The ciphers used in the two versions differ in minor details, which 
does not affect the analysis. 

The structure of this paper  is as follows: Section 2 describes PKZIP  and the 
PKZIP  s t ream cipher. The at tack is described in Section 3, and a s u m m a r y  of 
the results is given in Section 4. 
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2 T h e  P K Z I P  S t r e a m  C i p h e r  

PKZIP manages a ZIP file[l] which is an archive containing many files in a 
compressed form, along with file headers describing (for each file) the file name, 
the compression method, whether the file is encrypted, the CRC-32 value, the 
original and compressed sizes of the file, and other auxiliary information. 

The files are kept in the zip-file in the shortest form possible of several com- 
pression methods. In case that the compression methods do not shrink the size 
of the file, the files are stored without compression. If encryption is required, 12 
bytes (called the encryption header) are prepended to the compressed form, and 
the encrypted form of the result is kept in the zip-file. The 12 prepended bytes 
are used for randomization, but also include header dependent data to allow 
identification of wrong keys when decrypting. In particular, in PKZIP 1.10 the 
last two bytes of these 12 bytes .~re derived from the CRC-32 field of the header, 
and many of the other prepenc[ed bytes are constant or can be predicted from 
other values in the file header. In PKZIP 2.04g, only the last byte of these 12 
bytes is derived from the CRC-32 field. The file headers are not encrypted in 
both versions. 

The cipher is byte-oriented, encrypting under variable length keys. It has a 
96-bit internal memory, divided into three 32-bit words called key0, keyl and 
key2. An 8-bit variable key3 (not part of the internal memory) is derived from 
key2. The key initializes the memory: each key has an equivalent internal repre- 
sentation as three 32-bit words. Two keys are equivalent if their internal represen- 
tations are the same. The plaintext bytes update the memory during encryption. 

The main function of the cipher is called update_keys, and is used to update 
the internal memory and to derive the variable key3, for each given input (usually 
plaintext) byte: 

update_keys i (char) : 
local unsigned short temp 
key0i+l ~ ere32 (key0i, char) 
keyl~+ 1 *-- (keyl~ + LSB(key0~+l)) * 134775813+ 1 (mod 232) 
key2i+ 1 ~ crc32(key2~, MSB(keyli+l) ) 
tempi+l ~-- key2i+l I 3 (16 LS bits) 
key3i+ 1 ~-- LSB((tempi+l * (tempi+l | 1)) >> 8) 

end update_keys 

where I is the binary inclusive-or operator, and ~ denotes the right shift operator 
(as in the C programming language). LSB and MSB denote the least significant 
byte and the most significant byte of the operands, respectively. Note that the 
indices are used only for future references and are not part of the algorithm, and 
that the results of key3 using inclusive-or with 3 in the calculation of temp are 
the same as with the original inclusive-or with 2 used in the original algorithm. 
We prefer this notation in order to reduce one bit of uncertainty about temp in 
the following discussion. 

Before encrypting, the key (password) is processed to update the initial value 
of the internal memory by: 
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process_keys(key): 
key01_ l +- 0x12345678 
keyl l_  t ~ 0x23456789 
key21_ z ~-- 0x34567890 
loop for i ~-- 1 to l 

update_keys/_~ (key i ) 
end loop 

end process_keys 

where 1 is the length of the key (in bytes) and hexadecimal numbers are prefixed 
by 0x (as in the C programming language). After executing this procedure, the 
internal memory contains the internal representation of the key, which is denoted 
by key01, keyl 1 and key21. 

The encryption algorithm itself processes the bytes of the compressed form 
along with the prepended 12 bytes by: 

Encryption 
prepend P1,..., P12 
loop for i +- 1 to n 

Ci +- Pi �9 key3i 
update_keysi (Pi) 

end loop 

Decryption 

loop for i ~-- 1 to n 
Pi *-- Ci @ key3i 
update-keysi( Pi ) 

end loop 
discard P1, . . . ,  P12 

The decryption process is similar, except that it discards the 12 prepended bytes. 
The crc32 operation takes a previous 32-bit value and a byte, XORs them and 

calculates the next 32-bit value by the crc polynomial denoted by 0xEDB88320. 
In practice, a table crctab can be precomputed, and the crc32 calculation be- 
comes: 

crc32 = crc32(pval, char) = (pval >> 8 ) � 9  c rc tab[LSB(pval ) �9  char] 

The crc32 equation is invertible in the following sense: 

pval = crc32-1 (crc32, char) = (crc32 << 8) �9 ercinvtab[MSB(crc32)] • char 

crctab and crcinvtab are precomputed as: 

init_crcO : 
local unsigned long temp 
loop for i ~-- 0 to 255 

temp ~ crc32(0, i) 
crctab[i] *- temp 
crcinvtab[temp >> 24] +- (temp << 8) | i 

end loop 
end init_crc 

in which crc32 refers to the original definition of crc32: 
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crc32(temp, i) : 
temp ~-- temp @ i 
loop for j ~-- 0 to 7 

if odd(temp) then 
temp *--- temp >> 1 @ OxEDB88320 

else 
temp +-- temp >> 1 

endif 
end loop 
return temp 

end crc32 

3 T h e  At ta c k  

The attack we describe works even if the known plaintext bytes are not the first 
bytes (if the file is compressed, it needs the compressed bytes, rather than the 
uncompressed bytes). In the following discussion the subscripts of the n known 
plaintext bytes are denoted by 1,... ,n, even if the known bytes are not the first 
bytes. We ignore the subscripts when the meaning is clear and the discussion 
holds for all the indices. 

Under a known plaintext attack, both the plaintext and the ciphertext are 
known. In the PKZIP cipher, given a plaintext byte and the corresponding ci- 
phertext byte, the value of the variable key3 can be calculated by 

key3~ = Pi @ Ci. 

Given P1,.-. ,Pn and C1,... ,C~, we receive the values of key31,... ,key3 n. The 
known plaintext bytes are the inputs of the update_keys function, and the derived 
key3's are the outputs. Therefore, in order to break the cipher, it suffices to solve 
the set of equations derived from update_keys, and find the initial values of key0, 
keyl and key2. 

In the following subsections we describe how we find many possible values 
for key2, then how we extend these possible values to possible values of keyl, 
and key0, and how we discard all the wrong values. Then, we remain with only 
the right values which correspond to the internal representation of the key. 

3.1 key2 

The value of key3 depends only on the 14 bits of key2 that participate in temp. 
Any value of key3 is suggested by exactly 64 possible values of temp (and thus 
64 possible values of the 14 bits of key2). The two least significant bits of key2 
and the 16 most significant bits do not affect key3 (neither temp). 

Given the 64 possibilities of temp in one location of the encrypted text, we 
complete the 16 most significant bits of key2 with all the216 possible values, 
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Side Term Bits Number Bits Position Number of Values 
Left key2 i 14 2-15 64 
Right key2i+ 1 << 8 22 10-31 1 

crcinvtab[MSB (key2i+ 1) ] 32 0-31 1 
MSB(keyli+" 1 ) 24 8-31 1 

Total Left Hand Side 14 2-15 64 
Total Right Hand Side 22 10-32 1 
Common bits 6 10-15 
Total bits 30 2-31 

Table 1. The Known Bits in Equation 1 

and get 222 possible values for the 30 most significant bits of key2. key2i+ 1 is 
calculated by key2~+~ ~--crc32(key2~, MSB(keyl~+l) ). Thus, 

key2 i = crc32-1 (key2i+l ' MSB(keyl~+l)) (1) 

= (key2~+ 1 << 8) �9 crcinvtab[MSB(key2i+l) ] O MSB(keyli+l) .  

Given any particular value of key2i+l, for each term of this equation we can 
calculate the value of the 22 most significant bits of the right hand side of the 
equation, and we know 64 possibilities for the value of 14 bits of the left hand 
side, as described in Table 1. From the table, we can see that  six bits are common 
to the right hand side and the left hand side. Only about 2 -6 of the possible 
values of the 14 bits of key2 i have the same value of the common bits as in the 
right hand side, and thus, we remain with only one possible value of the 14 bits 
of key2 i in average, for each possible value of the 30 bits of key2i+ 1. When this 
equation holds, we can complete additional bits of the right and the left sides, 
up to the total of the 30 bits known in at le~sk one of the sides. Thus, we can 
deduce the 30 most significant bits of key2 i. W e  get in average one value for 
these 30 most significant bits of key2i, for each value of the 30 most significant 
bits of key2i+ 1. Therefore, we are now just in the same situation with key2~ as 
we were before with key2i+l, and we can now find values of 30 bits of key2i_l,  
key2i_2, . . . ,  key21. Given this list of 30-bit values, we can complete the 32-bit 
values of key2n, key2n_l, . . . ,  key2~ (excluding key21) using the same equation. 
We remain with about 222 lists of possible values (key2n, key2 n_l ,  . . . ,  key22), 
of which one must be the list actually calculated during encryption. 

3.2 Reducing t h e  n u m b e r  o f  pos s ib l e  va lues  o f  key2 

The total  complexity of our attack is (as described later) 216 times the number of 
possible lists of key2's. If we remain with 222 lists, the total complexity becomes 
238 . This complexity can be reduced if we can reduce the number of lists of 
key2's without discarding the right list. 
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bytes key2 Kst keg's 
entries 

5000000 
12~2=4194304 " ~  

2 3473408 2oooooo 
3 2152448 
4 1789183 10o0OOO 
5 1521084 

5OOO0O 
10 798169 
15 538746 

2OOOO0 
20 409011 
25 332606 l~0oo 
30 283930 5OOOO 
40 213751 
50 174471 2OOOO 

100 88248 
200 43796 1oooo 

300 31088 5000 
500 16822 

I000 7785 2~o 

2000 5196 
4000 3976 1ooo 

6000 3000 5~ 

8000 1296 

10000 1857 2~ 
12000 243 

12289 801 1 

\ 
\ 

\ 
\ 

t.i 

bytes 
10 100 1000 10000 

Fig. 1. Decre~e in the number of key2 candidates using varying amounts of known 
plaintext. These results are for the PKZIP contest file and are fairly typical, though 
the entry 12000 is unusually low. (logarithmic scaling). 

We observed tha t  the at tack requires only~ !"2-13 known plaintext bytes (as 
we describe later). Our idea is to use longer known plaintext streams, and to 
reduce the number  of lists based on the additional plaintext.  In particular,  we 
are interested only in the values of key213 , and not in all the list of key2i, i = 
1 3 , . . . ,  n. key213 is then used in the at tack as is described above. 

We s tar t  with the 222 possible values of key2~, and calculate the possible 
values of key2,~_ 1, key2~_ 2, etc. using Equation 1. The number  of possible values 
of key2 i (i = n - 1, n - 2, etc.) remains about  222. However, some of the values 
are duplicates of other values. When these duplicates are discarded, the number  
of possible values of key2 i is substantially decreased. To speed things up, we 
calculate all the possible values of key2 n_ 1, and remove the duplicates. Then we 
calculate all the possible values of key2n_2, and remove the duplicates, and so on. 
When the duplicates fraction becomes smaller, we can remove the duplicates only 
every several bytes, to save overhead. Figure 1 shows the number  of remaining 
values for any given size of known plaintext part icipating in the reduction, as 
was measured on the PKZIP  contest file (which is typical). We observed tha t  
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using about 40 known plaintext bytes (28 of them are used for the reduction and 
12 for the attack), the number of possible values of key21~ is reduced to about 
2 is, and the complexity of the attack is 234. Using 10000-byte known plaintext, 
the complexity of our attack is reduced to 224-227. 

3.3 keyl 

From the list of (key2n, key2n_l, . . . ,  key22) we can calculate the values of the 
most significant bytes the keyl 's  by 

MSB(keyli+l) = (key2i+ 1 ( ( 8 )  ~ crcinvtab[MSB(key2i+l) ] �9 key2i. 

We receive the list (MSB(keytn) , MSB(keyl~_l) , . . . ,  MSS(keyl3) ) (excluding 
MSB(keyl2)). 

Given MSB(keyl . )  and MSB(keyln_l),  we can calculate about 216 values 
for the full values of keyl n and keyl~_ 1 + LSB(key0~). This calculation can be 
done efficiently using lookup tables of size 256-1024. Note that  

keyln_ 1 + LSB(key0n) = (keyl n - 1). 134775813 -1 (mod 232) 

and that  LSB(key0n) is in the range 0, . . . ,  255. At this point we have about 
211 �9 216 = 227 (or 222 �9 216 = 23s) possible lists of key2's and keyl~. Note 
that  in the remainder of the attack no additionM complexity is added, and all 
the additional operations contain a fixed number of instructions for each of the 
already existing list. 

The values of keyl~_ 1 + LSB(key0~) are very close to the values of keyl~_ 1 
(since we lack only the 8-bit value LSB(key0~)). Thus, an average of only 
256-2 - s  = 1 possible vMue of keyl,~_ 1 that  leads to the most significant byte of 
keyl~_ 2 from the list. This value can be found efficiently using the same lookup 
tables used for finding keyl~, with only a few operations. Then, we remain with 
a similar situation, in which keyl~_ 1 is known and we lack only eight bits of 
keyl~_ 2. We find keyl~_ 2 with the same algorithm, and then find the rest of 
keyl~_3, keyl,~_4, and so on with the same algorithm. We result with about 
227 possible lists, each containing the values of (key2n, key2._1, " . . ,  key22, and 
keyln,  keyln_l ,  . . . ,  keyl4) (again, keyl 3 cannot be fully recovered since two 
successive wh~es of MSB(keyl) are requireZ ~o find each value of keyl). 

3.4 key0 

Given a list of (keyln, keyl~_l,  . . . ,  keyl4), we can easily calculate the values 
of the least significant bytes of (key0n, key0n_l, . . . ,  key05) by 

LSB(key0i+l) = ((keyli+l - 1). 134775813 -1) - keyl i (rood 232). 

key0i+ 1 is calculated by 

key0i+l ~-- crc32(key0i, Pi) 

.= (key0 i • 8) @ crctab[LSB(key0i) ~3 Pi]. 
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Crc32 is a linear function, and from any four consecutive LSB(key0) values, 
together with the corresponding known plaintext bytes it is possible to recover 
the full four key0's. Moreover, given one full key0, it is possible to reconstruct 
all the other key0's by calculating forward and backward, when the plaintext 
bytes are given. Thus, we can now receive key0,, . . . ,  key01 (this time including 
key01). We can now compare the values of the least significant bytes of key0,~_4, 
�9 key0n_ 7 to the corresponding values from the lists. Only a fraction of 2 -32 
of the lists satisfy the equality. Since we have only about 227 possible lists, it is 
expected that only one list remain. This list must have the right values of the 
key0's, keyl's, and key2's, and in particular the right values of key0n, keyln and 
key2,~. In total we need 12 known plaintext bytes for this analysis (except for 
reducing the number of key2 lists) since in the lists the values of LSB(key0i) 
start w i t h i = 5 ,  a n d n - 7 = 5 ~ n =  12. 

If no reduction of the number of key2 lists is performed, 238 lists of (key0, 
keyl, key2) remain at this point, rather than 227. Thus, we need to compare five 
bytes key0~_4, . . . ,  key0n_ s in order to remain with only one list. In this case, 
13 known plaintext bytes are required for the whole attack, and the complexity 
of analysis is 23s. 

3.5 The  In te rna l  R e p r e s e n t a t i o n  of  the  K ey  

Given key0n, keyl n and key2n, it is possible to construct key0i, keyl i and key2 i 
for any i < n using only the ciphertext bytes, without using the known plain- 
text, and even if the known plaintext starts in the middle of the encrypted file 
this construction works and provides also the unknown plaintext and the 12 
prepended bytes. In particular it can find the internal representation of the key, 
denoted by key01, keyl 1 and key21 (where the index denotes again the index in 
the encrypted text, rather than in the known plaintext). The calculation is as 
follows: 

key2i = 

keyl i = 

tempi = 

key3 i = 

Pi= 

key0i = 

crc32 -l(key2i+l, MSB(keyli+I)) 

((keyli+ 1 - 1) * 134775813 -1) - LSB(key0i+l) 

key2 i ]3 

LSB((temp i * (tempi @ 1)) >> 8) 

Ci ~ key3i 

crc32(key0i+l, Pi) 

(mod 232) 

(2) 

The resulting value of (key01, key 1 l, key21) is the internal representation 
of the key. It is independent of the plaintext and the prepended bytes, and 
depends only on the key. With this internal representation of the key we can 
decrypt any ciphertext encrypted under the same key. The two bytes of crc32 
(one byte in version 2.04g) which are included in the 12 prepended bytes allow 
further verification that the file is really encrypted under the found internal 
representation of the key. 
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Key length 1-6 7 8 9 10 11 12 13 
Complexity 1 28 216 224 239- 240 243 2 ~6 

Table 2. Complexity of finding the key itself 

3.6 The Key (Password) 

The internal representation of the key suffices to break the cipher. However, we 
can go even further and find the key itself from this internal representation with 
the complexities summarized in Table 2. The algorithm tries all key lengths 0, 
1, 2, . . . ,  up to some maximal length; for each key length it does as described in 
the following paragraphs. 

For I < 4 it knows key01_I atl4 key01 . Only l _< 4 key bytes are entered to the 
crc32 calculations that  update key01_ z into key01 . Crc32 is a linear function, and 
these 1 < 4 key bytes can be recovered, just as key0,~, . . . ,  key0~_ 3 recovered 
above. Given the l key bytes, we reconstruct the internal representation, and 
verify that  we get keyl I and key21 as expected (key01 must be as expected, 
due to the construction). If the verification succeeds, we found the key (or an 
equivalent key). Otherwise, we try the next key length. 

For 5 < 1 < 6 we can calculate keYl0, key20 and key2_1, as in Equation 2. 
Then, key22_l, . . . ,  key2_ 2 can be recovered since they are also calculated with 
crc32, and depend on l - 2  < 4 unknown bytes (of keyl's). These unknown bytes 
MSB(keyl~_l) , . . . ,  MSB(keyl 1) are also recovered at the same time. keyl l_  l is 
known. Thus, we can receive an average of one possible value for keyl2_ l and for 
keyl3_l, together with LSB(key02_~) and LSB(key03_l) , using the same lookup 
tables used in the attack. From LSB(key02_t) and LSB(key03_t) and key01_~, 
we can complete key02_ l and key03_ l and get key 1 and key 2. The remaining 
1 - 2 key bytes are found by solving the l - 2 < 4 missing bytes of the crc32 
as is done for the case of 1 < 4. Finally, we verify that  the received key has the 
expected internal representation. If so, we have found the key (or an equivalent 
key). Otherwise, we try the next key length. 

For l > 6, we try all the possible values of key1, . . . ,  key~_6, calculating 
key0_5, keyl_ 5 and k e y 2  5. Then we used the l = 6 algorithm to find the re- 
maining six key bytes. In total we try about 2s(l-6) keys. Only a fraction of 
2 -64 of them pass the verification (2 -32 due to each of keyl and key2). Thus, 
we expect to remain with only the right key (or an equivalent) in trials of up to 
13-byte keys. Note that keys longer than 12 bytes will almost always have equiv- 
alents with up to 12 (or sometimes 13) bytes, since the internal representation 
is only 12-bytes long. 

4 S u m m a r y  

In this paper we describe a new attack on the PKZIP stream cipher which finds 
the internal representation of the key, which suffices to decrypt the whole file 
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Bytes 13 40 110 310 510 1000 4000 10000 
Complexity 23s 234 232 231 23o 2 ~9 22s 227 

Table 3. Complexity of the attack by the size of the known plaintext 

and any other file which is encrypted by the same key. This known plaintext 
attack breaks the cipher using 40 (compressed) known plaintext bytes, or about 
the 200 first uncompressed bytes (if the file is compressed), with complexity 234. 
Using about 10000 known plaintext bytes, the complexity is reduced to about 
227. Table 3 describes the complexity of the attack for various sizes of known 
plaintext. The original key (password) can be constructed from the internal rep- 
resentation. An implementationpf this attack in software was applied against the 
PKZIP cipher contest. It found:tlie key "f7 30 69 89 77 bl  20" (in hexadecimal) 
within a few hours on a personal computer. 

A variant of the attack requires only 13 known plaintext bytes, in price of a 
higher complexity 23s. Since the last two bytes (one in version 2.04g) of the 12 
prepended bytes are always known, if the known plaintext portion of the file is 
in its beginning, the attack requires only 11 (12) known plaintext bytes of the 
compressed file. (In version 1.10 several additional prepended bytes might be 
predictable, thus the attack might actually require even fewer known plaintext 
bytes.) 

We conclude that the PKZIP cipher is weak and that it should not be used 
to protect valuable information. 
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